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There is considered the question regarding the extraction of a unique solution, 
defined in all space, of the inhomogeneous problem for the system of equa - 

tions for steady vibrations of elastic media in plane strain on the basis of the 
radiation principle. There are presented conditions at infinity, which go over 
directly into the Sommerfeld condition upon making the transition to iso - 
tropic media. 

1. Let us consider the system of equations 

‘3 az,Z + C3,az, 3% -=+cp&p~=o 

(1.1) 

describing the vibrations of cubic, hexagonal, certain tetragonal , rhombic, and rhom - 
bohedric crystals as well as orthotropic and transversely isotropic media in plane strain. 

Here u, w are components of the displacements along the axes z and zs, the con- 
stants cl are expressed in terms of the elastic constants of the medium [ 11, t is the 
time, and p is the density. 

The system (1.1) is strictly hyperbolic under the conditions 

-2 Jfqky<~ +aB 
(1.2) 

(a = c3 I cl, /3 = c3 I cl, y = 1 + a@ - csa I clca) 

The positive-definiteness conditions for the elastic energy have a different form 
depending on the specific form of the elastic symmetry and relate both the elastic con - 
stants in ~‘i (four ) , and those not in Ci in all cases, except the case of cubic crystals [ 11. 

The characteristic polynomial of the system (1.1) is written in the form 

A = (p - c3p2 - qP)(p - c4p2 - c3e2) - ~3383~3 

and is a fourth-order polynomial in 8 and lr. 

(1.3) 

The real zeroes of the characteristic polynomial (1.3 ) form two closed (internal 
and external j non-intersecting curves on the plane 8, p which are symmetric with respect 
to the coordinate axes. In the particular case a=fl, the curves of the realzeroes 

of the characteristic polynomial are divided into four hinds [ 11 depending on the value of Y 

1) y* < y < 1 + a2, 2) 2a C y C ye 
3) a (a + 1) < y < 2a, 4) -2a < y C a (a + 1) 

(1.4) 

354 
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where only a ( 1 are admissible [ 11. Here 

2y* = -3(1 - ay + (1 + a)1/9d - 14a + 9 

All four configurations are presented in Fig. 1. Isotropic media correspond to the 
value y = 2a when the curves of the real zeroes are concentric circles. 

Fig. 1 

0 I9 0 t 
Fig. 2 

The characteristicequation A (0, p) = 0 hasfourroots.Inthecase a = p 
we can write 

CL193 = f (Nl - VN,% - Ivp, p*,a = f (Iv, + )/N1"-_N,)"~ 

2N, = (1 + a) b2 - Ba(y / cc), ba = pc3-l 

Na = (a” - CP)(b% - CP), a2 = PC,-l 

(1. 5) 

The functions pL, ((I), examined at an arbitrary point of the real axis 0, can 
also take on imaginary value (in the first two of the four cases in (1.4) ) in addition to 
the real values (points on the curves of real zeroes), or pure imaginary and complex 
conjugate values (the last two cases in (1.4) ). 

For a single-valued determination of the four-valued function I.& (e), which is a 
solution of the characteristic equation, it is necessary to construct a four - sheeted 

Riemann surface above the plane of the complex variable 8. We construct the Riemann 

surface by starting from the following considerations. Any line 8 = const in the 
interval 1 8 1 < a (as well as in the interval b ( 1 8 1 ( 8” in the fourth case 
of (1.4)) intersects the curves of real zeroes at four real points. At two points the ex- 
ternal normal to the curves has a positive projection on the l.r -axis, and a negative 

projection on the other two. The locus of points of the first kind will be denoted by P1 
and Ps. Two values of the function lr (e), denoted by i@) and Ps(8) ( the 
first and second sheets of the Riemann surface) will correspond to them. We denote the 
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locus of points of the second kind by /Js and p4. We denote the two values of the 
function p (0) corresponding to them by p3 (Cl) = -pi(e) and p4 (0) = 

-ps(O)(the third and fourth sheets ). The separate sheets are interconnected by means 
of slits drawn through branch points of the external and internal radicals in (1.5 ) . 

2. At time t = 0 , let a point-pulsed source of perturbations be activated at 
the origin x1 = x2 = 0 in an infinite elastic medium. Assuming that the medium 

is at rest prior to the time t = 0 , we obtain that quasi-longitudinal and quasi- trans- 

verse perturbation waves will be propagated in all directions from the point rl = 

us = 0. The wave fronts are envelopes of families of lines t - eZ1 - pr (e)Z2 = 0, 

l=p,s, and are determined from the solutions of the system of equations which 
we write in the form 

t = pr (e)r sin rp + er cos cp, plye) sin up + cos up = 0 (2.1) 
(x1 = r cos cp, x2 = r sin cp) 

The values of /Jr (6) here refer to points on the curves of real zeroes. 
The second equation in (2.1) determines a point on the curve of real zeroes sr at which 

PI’(e) = - ctg up, 8 = el* (2.2) 

Substituting 8 = el. in the first of equations (2.1) , we find tr corresponding to 
the residence time of the perturbation at the point (pi, x2). 

We refer the value 1 = p to points on the inner curve and I = ._s to points on 

the outer curve of real zeroes. 

It follows from (2.2 ) that if the curves of real zeroes are convex ,then the wave fronts 

are convex closed curves without angular points. If the outer curve of real zeroes has an in- 

flection point, then the wave front will have angular points ( cusps of the first kind ). For 
the configuration presented in Fig. 2a, the wave fronts will have the form shown in Fig. 
2b (this configuration is possible in the case a # fJ ) where we use the notation 

E = x1 / t and q = x2 I t, q > 0. 
Substituting the value 0, . in the first equation of (2.l),we find 

ur-l(~) - 4 ! r = or, sin cp + oz. cos rp, PZ. = ~1~ (Or.) 

It hence follows that the quantity reciprocal to the velocity ur (9) with which 
the perturbation occurring at the origin at the time t = 0 arrives at the point of ob - 

servation (xi, x2), equals the projection of the vector drawn from the origin to the 

point or, on the curve of real zeroes ,S1 (ul, = (C)L,, PI,)) in the @ plane, at 

which the vector of the normal coincides, in direction, with the vector x = (x1, x2) 
in the direction of this normal. The velocity uz is called the ray velocity. 

There is always just one point or,, on the inner curve of real zeroes S, since 

the inner curve is always convex. Denoting quantities reciprocal to the ray velocities 

bY cl (cp), 1 = p, s, we have 

cP (cp) = pp. sin cp + 8,. coz cp 
(2.3 1 

The outer curve s, can be convex ; then there is just one point o,+ and one 
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value ) respectively, c,(v) for a given cp 

G(cp) = h, sin cp + es* cos cp (2.4) 

or there are concavity sections (inflection point ) , In this latter case, there is either 

just one point 03, depending on the value of cp (for values of q corresponding 
to rays not passing through the lacunas) and one value c,(q)) defined by (2.4) , or 
three points cr8,t (j = 1, 2,3) at which the directions of the normals coincide with 
the direction of the vector X; we have 

cJi (cp) = pdti sin cp + Rei con cp, j = I, 23 

3. Let us be interested in solutions of the form 

7.4 = 241 exp (igt), w = ug exp (igt) 

We obtain the system of equations 

MUi) = 0, i,t=1,2 (3.1) 

L11 = Cl y-&+cs&+P", L21=cz& 

La2 = cs g$ + c4& + p2, Ll2 = L21, P2 = P&T2 

for the stationary part of the displacements u1 and us which will be of elliptic type 
for the conditions (1.2 ) . 

Let us examine the domain G of the space xlxz with boundary B. Let the 

functions ui, u2 in the domain G be continuously differentiable twice and satisfy 

the inhomogeneous system of equations 

L,t(Ui) = Ft (3.2) 

and the functions Vii and vzf (j = l,2) t wice continuously differentiable every- 

where except at the points (x1”, 2s’) and satisfy the system of equations 

LitfIJi’ (X, X0)] = 6ii 6 (X - X0) 

(X = (Xl, X2), X0 = (X10, X:2”)) 

where 6ii is the Kronecker symbol. Then from the Green ‘s formula for the self - 

adjoint operator Lit [2] 

J {UiLi, (Vt) - VtLit (Ui)} dX = J Mit (Ui, ~1) dsy dx = dX, dX2 
c; l?J 

we obtain 

Uj (2”) = J u*’ (x) Pt (X) dx f J Mil [Ui (X)7 Vti (X7 X”)I ds 

L; B 
(3.3) 
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It is assumed that Ft are sufficiently smooth functions, equal to zero outside a certain 
domain lying entirely within the domain G. The expression for Mi t is written in the form 

Mi,(ui, ut) = U T (V) - VT (U) 

UT (V) = Ml(ui, vi) COS$ + Mz(ui, vi) sing 

VT (U) = Ml(vi, Ui) COS$ + M2(Ui, ui) sing 

Ml(“i7 Vi) = %%I(% Q) + UZ~12(~1~ u,) 

M2(“i9 ui) = uIz21(U1~ U2) + U@&U1, Uz) 

where q is an angle which the external normal to the contour makes with the zi 

axis, (Tll = ch,, -52 = 'tw2, $1 = %*X,, (722 = ox, are stress operators acting 
on the space of vector-functions indicated in parentheses, The functions uti form a 
fundamental matrix of the operator Li,. 

Let B be a circle of radius R with center at the origin. The sources defined 
by the functions F, are in the finite part of the plane lying entirely within the domain 

G. Let the domain G increase without limit, by letting R tend to infinity. Then, 
for the sources given in the finite part of the plane to define uniquely a solution of the 

problem in the case of an infinite medium, the following additional condition should 

be satisfied. 

lim J Mit [z+, u,i] ds = 0 (3.4) 
R-+mR 

The first integral in (3.3 ) is a particular solution Ujl of the inhomogeneous pro- 

blem since it is the convolution of the right side and the fundamental solution. We obtain 
that as R + co 

Uj’ - s Mi, [Ui, Utj] as = uj - Ujl 
Et 

as the difference between two solutions of the inhomogeneous problem, is a solution of 

the homogeneous problem, i. e., satisfies the system J&(u'~) = 0 in the wholeplane. 
To assure the uniqueness of the solution of the inhomogeneous problem in the whole 

plane , it is sufficient to impose such conditions on the function Ui at infinity that the so- 

lutions of the homogeneous problem satisfying them could only occur by identical means. 

4. Uniqueness theorem. Let the functions Ui be 1) twice continuously 
differentiable and satisfy the homogeneous system of equations Li*(Ui) = 0 in the 
whole plane 2 = (51, ~~2) , and 2 ) representable in the form ut = uiP + uis, where 

a ) The functions Uip satisfy the following conditions in the neighborhood of infinity 

Ui* = 0 (Y/f), 
t3U.P 

* - ik, (q) uiP I= 0 (r-‘/z) (4.1) 

b ) In the case of strictly convex curves of real zeroes for any cp and in the case 
when there are concavity sections on the curves of real zeroes, the functions u is will 

satisfy conditions of the form 

Ui' = 0 (+“)y 
aUi8 

7 - ik, (cp) uis = o (r-‘/z) (4.2) 
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at infinity in angular domains of the first kind ; 
c ) The functions l&j,’ will satisfy the conditions 

3 

uis = 

c 

II 
uij , uii 

8 = 0 (+/l)) iksi (up) Uijs = o (r-l/*) (4.3) 

j=l 

at infinity in angular domains of the second kind. 

Then the functions Ui equal zero identically in the whole zlzs plane. 
Here 

kp (cp) = gc, (cp), k,(cp) = gc,(cp), k,’ (cp) = gc,i (cp) 

The 51x2 plane is partitioned as follows when there are concavity sections in 
the angular domains of the first and second kind on the outer curve of normals. Wedraw 

the rays cpy(Y = 1,2, . . ., m (here m equals the number of points on the curve 
of real zeroes where the curvature is zero) from the origin at angles equal to the slopes 
of the normals to the curves of real zeroes at points where the curvature equals zero 
(inflection points ) . These rays will pass through angular points on the fronts. We refer 
angular domains without lacunae to the angular domains of the first kind. The angular 

domains in which lacunae exist are referred to the domains of the second kind. The wave pat- 
tern with the mentioned partition of the 51% plane into angular domains is presented in 

Fig.3 for media with cc = p , -2a ( y < a(a + 1) I 

Fig, 3 Fig. 4 

Let us first examine the case when the curves of real zeroes are strictly convex. If 
a=fi thenthisisamediumwith 2a<y<y,,a(a+1):<y<2a. 

The boundary value y = 2a refers to isotropic media. In the general case a # fi, 
and O<a<l, O<p<l theconditions 

a($+I)<y<y*” for a>B 

fJ(a+I)<y<y,’ for B>a 

refer to these media. 
The quantity y*’ = y* (a, p) is presented in [3 I. 
Let us consider a differential equation of the form 
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p (W 24 (4 = f (4 (1. 1 

Here p (G1, . . ., CL) is some polynomial, x = (21, . . ., 5,) is a point in 
n -dim~sional space, D denotes the formal vector 

and G denotes the point (CTl, . . ., a,). 
i-rfd / &, . . . , d / ch,J, 

Let us assume the following conditions to be satisfied : 
a) P (CT) is a hypoelliptic polynomial ; 
b) All coefficients of the polynomial P (0) are real numbers ; 
c ) For all real o for which P (0) = 0, the condition grad P (CT) # 0 is satisfied ; 
d) The curvature is different from zero at each point of the surface of real zeroes 

of the polynomial. 
There results from conditions b) and c) that all the real zeroes of the polynomial 

P (G) are located on one or more smooth closed surfaces of the dimension n - 1. 

Let them be denoted by S,, . . ., Sk. 
Let us consider one of the surfaces 81. Let o+’ (0) denote a point on the sur- 

face 8, at which the normal to Sr directed outward from A!?, parallel to 0 ( o is 
a unit vector, x = or )) and 0-l (0) a point at which the normal has the oppo - 

site direction. These points are uniquely defined since each of the surfaces s, is strictly 

convex (Fig, 4 ). 
Let Q (0, L)) be a certain fixed differential operator whose coefficients depend 

only on o such that for any w and 1 < 1 < k the polynomial Q (0, a) is zero 

at one of the points CI,~ (0) and o_’ (w) and different from zero at the other. For 

z # 0 the coefficients of the operator 0 (0, D) areassumedsufficiently smooth. 
The following uniqueness theorem is proved in [ 4 ] : If the polynomial p (c) 

satisfies conditions a ) - d ) , then the solution of the homogeneous equation 

P (rt) u (2) = 0 (4.5) 
satisfying the conditions 

U (2) = 0 (r(a-n)/a), Q (w, D) U. (5) = 0 (?-(r-n)i’A) (4.6 1 

Q [w, CT*’ (co)1 = 0, Q [w, ay' (@))I # 0, 1 d l< k (4.7 1 

must be identically zero. Here the upper and lower signs are taken in the subscripts 

depending on the selection of the surface Sr . 
Any two polynomials Q1(w, o) and Q&o, (T), which vanish simultaneously 

at one of the points o+’ (0) or 0-r (w) and not at the other, extract the same 

solution of (4.5 ) by using conditions (4.6 ) and (4.7 ) . 

According to [ 5 1, every solution of a homogeneous system of linear equations with 
constant coefficients is also a solution of some scalar equation. In the case under con- 

sideration the equation is written in the form 

P (D)u = 0, P (II) = L&,, - L,,L,, (4.8) 

where p (W is a fourth order differential operator, To prove the theorem, it is 

sufficient to show that conditions (4.1) and (4.2 ) are of the same nature as conditions 

(4.6 1 and (4.7 >. 
Rewriting the expressions in the right in (4. 1) and (4.2 ) in the form 
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iI a 
- - ik, (cp)] ul = o (r+), al l=p,s (4.9) 

and going over from differentiation with respect to the radius to differentiation with 
respect to 21 and x2, we obtain 

Moreover, replacing the formal vector i-l(8 / &q, d / 3x2) by the vector 

(J = (% 02)r 01 = go, 'T, = gp, we willhave 

QI (0, a) = ig (p sin cp + 8 cos cp) - ikl (cp), I = P,S 

The polynomial 

Qdo, 4 = Qp (a, 4 Qs(w 4 

can be taken as Q (a, a) . 
It is seen that Q1(w, 0,‘) = 0 while Ql(w, u_‘) # 0 for I = p, s if each 

of the polynomials Ql (co, a) vanishes at the appropriate point a+’ and does not at a_’ . 

We find 

QI (0, u+‘) = 0, Ql (0, 0-l) = -i2kl (cp) 

at the points u+’ (CO), a_’ (CO) (Fig. 4 ) , whose coordinates equal (&,, pl (e,,)) and 

(+,, -PL1 &*)) respectively. 
Here 2 = p refers to the inner and 1 = s to the outer curve of real zeroes. 

Therefore, conditions (4.6 > and (4.7 ) are satisfied, and since the polynomial P (a), 

defined by (4.8), satisfies all the hypotheses a) - d) , the uniqueness theorem for the 

system (3.2 ) resultr from the theorem for (4.5 ) , where P (CT) is defined by (4.8 ) , 
Taking account of the asymptotic form of the solutions of the inhomogeneous pro - 

blem as i* --f 00 [ 6 ] in the case of convex curves of realzeroes, conditions (4.1) and 
(4.2 ) can be written in the form 

&L. 
uip = 0 (r-‘/z), -$L - ik, (up) Uip = 0 (r-“/z) 

uiS = 0 (r-‘/z), 
au.S 

-$ - ik, (cp) uis = 0 (r-*/2) 

When the outer curve of normals has an inflection point, the wave fronts have 
acute-angled edges (the points P, and Q1 in Fig. 2 ) , and the directions of the 

radii of the vectors passing through the angular points ( P, and Q1 ) are singular, In 
the neighborhood of these directions, the asymptotic of the solutions of the homogeneous 
problem will not be uniform in cp as r + 00 and the remainder term of the asymp - 

totic expansions does not equal 0 (r-“/2) as in the case of the ordinary direction (or 

for any 9 in the case of convex curves of real zeroes). Using the asymptotic expan- 
sions for the neighborhood of the singular directions presented in [ 6 1, the proof of the 
theorem for the case of curves of real zeroes having inflection points can be carried out 
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not by following [4] but by direct estimation of the integral (3.4) by the method elu - 
cidated in [ 7 1. 

From the viewpoint of a physical description of the process of steady propagation 
of vibrations in an anisotropic elastic medium, conditions (4.1) - (4.3 ) indicate that the 

solution of every problem about steady vibrations of an infinite medium(independently 
of the specific form and location of the sources given in the finite part of space) will 
degenerate at infinity into traveling diverging waves, where the equal-phase curves 
agree with the fronts of the waves being propagated from a concentrated pulse source. 

The distinction from isotropic media is that the ray velocity in the anisotropic medium 
depends on the direction and the equal-phase curves will not be circles. In going over 
to a = #J and y = 2a (isotropic medium ) , we have 

cp (VP) = a, cs(cp) = 0, &((cp) = k, k,(cp) = l 

k = ga, 1 = gb, a = I/p, b = 1/p I c3 

and conditions (4.1) and (4.2 ) go over into the known Sommerfeld condition for the 
Helmholtz equations. At infinity the equal-phase curves will be concentric circles. 

Each of the conditions (4.1) and (4.2 ) discerns a definite class of uniqueness of sol - 
utions of the system (3.2 ) . Hence , the inhomogeneous system of equations (3.2 ),for a 
given right side, allows one solution from the class WP formed by the functions uiP, and 
one solution from the class w”, formed by the functions ui’. This means that two kinds 

of waves, quasi-longitudinal and quasi- transverse, can be propagated in a medium. 
In the case under consideration of the whole space (the plane z1z2 >, each of 

the kinds of waves can be propagated separately and independently of the other. Hence, 
theuniqueness theorem can be formulated separately for each of the classes Wp and W”. 

A different pattern is observed when we go over to problems for the exterior of 

bounded domains (the exterior of piecewise continuously differentiable closed curves ). 

Here, because of the definite conditions on the boundary of the domain, both kinds of 
waves turn out ot be related in the general case, and solutions cannot exist in the class 

W* or Ws taken separately. 
Formulation of the uniqueness theorem for the exterior of a bounded domain G 

with boundary B (exterior problem of vibrations theory) will differ just by the fact 

that “in the exterior of the domain G ” should be written everywhere in the condi- 
tions of the theorem in place of “in the whole zizs plane” , and the following con- 

dition should be added : 
e) The displacements (or stresses) equal zero on the boundary B of thedomain 

G. 
In conclusion, let us note that as in the case of the Sommerfeld conditions, the 

relationships (4.9 ) are the main components of conditions (4.1) and (4.2 ). The relation 

ui 
2 = @r-l/z) indicates only that the solution decreases as r-‘h at infinity. There 

is an infinity of such solutions. The conditions mentioned correspond at infinity to 

diverging waves when there are no perturbation sources at infinity. 
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